An Incremental Path-Following Splitting Method for Linearly Constrained Nonconvex Nonsmooth Programs

نویسندگان

  • Tianyi Lin
  • Wei Liu
  • Linbo Qiao
  • Steven C. H. Hoi
چکیده

The linearly constrained nonconvex nonsmooth program has drawn much attention over the last few years due to its ubiquitous power of modeling in the area of machine learning. A variety of important problems, including deep learning, matrix factorization, and phase retrieval, can be reformulated as the problem of optimizing a highly nonconvex and nonsmooth objective function with some linear constraints. However, it is challenging to solve a linearly constrained nonconvex nonsmooth program, which is much complicated than its unconstrained counterpart. In fact, the feasible region is a polyhedron, where a simple projection is intractable in general. In addition, the per-iteration cost is extremely expensive for the high-dimensional case. Therefore, it has been recognized promising to develop a provable and practical algorithm for linearly constrained nonconvex nonsmooth programs. In this paper, we develop an incremental path-following splitting algorithm with a theoretical guarantee and a low computational cost. In specific, we show that this algorithm converges to an -approximate stationary solution within O(1/ ) iterations, and that the per-iteration cost is very small for the randomized variable selection rule. To the best of our knowledge, this is the first incremental method to solve linearly constrained nonconvex nonsmooth pro∗Corresponding author Email address: [email protected] (Tianyi LIN) Paper submitted to IJCAI January 31, 2018 ar X iv :1 80 1. 10 11 9v 1 [ cs .L G ] 3 0 Ja n 20 18 grams with a theoretical guarantee. Experiments conducted on the constrained concave penalized linear regression (CCPLR) and nonconvex support vector machine (NCSVM) demonstrate that the proposed algorithm is more effective and stable than other competing heuristic methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable nonconvex inexact proximal splitting

We study a class of large-scale, nonsmooth, and nonconvex optimization problems. In particular, we focus on nonconvex problems with composite objectives. This class includes the extensively studied class of convex composite objective problems as a subclass. To solve composite nonconvex problems we introduce a powerful new framework based on asymptotically nonvanishing errors, avoiding the commo...

متن کامل

Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs

This paper establishes the iteration-complexity of a Jacobi-type non-Euclidean proximal alternating direction method of multipliers (ADMM) for solving multi-block linearly constrained nonconvex programs. The subproblems of this ADMM variant can be solved in parallel and hence the method has great potential to solve large scale multi-block linearly constrained nonconvex programs. Moreover, our a...

متن کامل

Nonconvex Proximal Splitting: Batch and Incremental Algorithms

Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-base...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

A smoothing augmented Lagrangian method for solving simple bilevel programs

In this paper, we design a numerical algorithm for solving a simple bilevel program where the lower level program is a nonconvex minimization problem with a convex set constraint. We propose to solve a combined problem where the first order condition and the value function are both present in the constraints. Since the value function is in general nonsmooth, the combined problem is in general a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.10119  شماره 

صفحات  -

تاریخ انتشار 2018